
October 1992

NASA-CR-19097Z

UILU-ENG-92-2239

CRHC-92-21

Center for Reliable and High-Performance Computing

SIMULATION AND
ANALYSIS OF
SUPPORT HARDWARE
FOR MULTIPLE
INSTRUCTION ROLLBACK

tl

L

a /

L.7-. _

Neil J. Alewine

(_.._AS A_C__ I c.3972) S I MULAT IQ*'4 ANn

A_'iALYS IS _r SUPPORT HA Rr)W&RE FOP.
t'-MULTIPLE I,_,TRUCTI_N RQLL.qACK

(I|iinois Univ.) "34 D

c,3/6o

'493-125_1

Uncl as

01271bS

Coordinated Science Laboratory

College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

Simulation and Analysis of Support

Hardware for Multiple Instruction Rollback

Neal J. Alewine

Center for Reliable and High-Performance Computing

University of Illinois

1308 West Main Street

Urbana, IL 61801

e-mail to alewine@crhc.uiuc.edu

September 10, 1992

Abstract

Recently, a compiler-assisted approach to multiple instruction retry was developed

[1]. In this scheme a read bu]_er of size 2N, where N represents the maximum in-
struction rollback distance, is used to resolve one type of data hazard. This hardware

support helps to reduce code growth, complilation time, and some of the performance

impacts associated with hazard resolution. The 2N read buffer size requirement of

the compiler-assisted approach is worst case, assuring data redundancy for all data

required but also providing some unnecessary redundancy. By adding extra bits in the

operand field for source 1 and source 2 it becomes possible to design the read buffer to

save only those values required, thus reducing the read buffer size requirement. This

study measures the effect on performance of a DECstation 3100 running 10 applica-

tion programs using 6 read buffer configurations at varying read buffer sizes. Two

configurations emerged as the most efficient and differed depending on whether split-

cycle-saves were assumed. It was determined that while the full 2N read buffer size is

not required, nearly 2N is required to adequately handle most applications. It is also

shown that if a buffer size less than 2N is chosen, it is possible that some applications

will suffer significant performance impacts. This study concludes that no reduction in

read buffer size below 2N is practical given a wide variety of general applications.

1 Introduction

1.1 Instruction Rollback Schemes

Checkpointing is a well understood method for implementing rollback recovery when system

errors occur [2-4]. In case of a detected fault, the system is rolled back to a previous

checkpoint containing a consistent state of the system [5]. Full checkpointing may permit

long error detection latency at the expense of long recovery times.

When transient processor errors occur, multiple instruction retry can be an effective

alternative to full checkpointing and rollback recovery [1,6-8]. Multiple instruction retry

within a sliding window of a few instructions [1, 6, 7], or re-execution of a few cycles [9], can

be implemented in parallel with concurrent error detection for rapid recovery from transient

processor errors.

The issues associated with instruction retry are similar to those with exception handling

in out-of-order instruction execution. If an instruction is to write to a register and N is the

maximum error (or exception) detection latency, two copies of the data must be maintained

for N cycles. Hardware schemes such as reorder buffers, history buffers, future files [10],

micro-rollback [7], and compiler-assisted rollback [1] differ in where the updated and old

values reside, circuit complexity, CPU cycle times, and rollback efficiency.

In contrast to totally hardware schemes, a compiler-assisted approach to implementing

multiple instruction retry was developed where the compiler uses a series of transformations

to eliminate anti-dependencies of length _< N [6]. This approach produces a performance

impact consistentwith hardware-basedtechniques[7] and has the addedbenefit of making

N a compile-time parameter.

More recently the compiler-assisted multiple retry scheme was extended to include a

broad class of code execution f_lures [1]. The error model was expanded to allow any legal

path in the control flow graph, thus allowing branch recovery. Possible hazards were shown

to be one of two types. Similar compiler techniques to those in [6] were shown to be effective

in resolving both types of hazards. Finally, a hardware scheme was introduced to resolve

one type of hazard, thus reducing code growth, complilation time, and performance impact.

1.2 Compiler-assisted Multiple Instruction Retry

Within a general error model, data hazards resulting from instruction retry are of two types

[1]. On-path hazards are those encountered when the instruction path after rollback is the

same as the initial instruction path. As shown in Figure l(a), r_ represents an on-path

hazard. The initial instruction sequence causes r_ to be written. However, after rollback, r_

is read prior to being re-written. Branch hazards are those encountered when the instruction

path after rollback is different than the initial instruction path. As shown in Figure l(b), ry

represents a branch hazard. The initial instruction sequence causes ry to be written. After

rollback, ry can be read prior to being re-written as with the on-path hazard, however in

this case initial path repetition is not guaranteed.

Compiler transformations have been shown to be effective in resolving branch hazards

[1]. Hardware support consisting of a read buffer of size 2N, as shown in Figure 2, was

N

Ir- I

[r=r +1] i

onam61jeo oo°_

error

detected

z

i rollback
|
i

1

lc--
ry is live

N

15=r +r I

e2ertOrcte<_ "

rollback

(a) (b)

Figure 1: On-path Hazard.

similarly shown to be effective in resolving on-path hazards. The read buffer maintains a

window of register read history. At rollback, the read buffer is flushed back to the general

purpose register file, restoring the register file to a restartable state.

The read buffer size requirement of 2N is worst case. The buffer simple saves the last N

register reads from the register file across the source 1 bus (S1) and the source 2 bus (S2).

This assures data redundancy for all values required but also saves register reads which are

not required during rollback. Register reads which require saving are known at compile time.

If this information were added to the instruction at compile time (eg., as a extra bit field for

source 1 and for source 2), then the read buffer could be designed to save only those values

required. As long as the required values were maintained for N cycles, the read buffer size

could conceivably be less than 2N.

The purpose of this study is to determine the effect on a system's performance given

various read buffer configurations for a range of application programs, assessing the viability

S1 $2

¢

Figure 2: Read Buffer.

of read buffer size reduction while determining the optimal buffer configuration.

Section 2 describes the rollback strategy and various read buffer configurations to be

studied, Section 3 discusses the methodology used for the simulations, Section 4 contains

results and analysis from the simulations, and Section 5 summarizes the findings.

2 Read Buffer Configurations

2.1 Overall Recovery Strategy

Given a read buffer configuration as shown in Figure 3, rollback is accomplished by first

flushing the read buffer back to the general purpose register (GPR) file in the reverse order

of which the values were saved. Figure 3 shows the two FIFO read buffers above S1 and

$2 to better illustrate the buffer's content given the instruction sequence shown. As long as

the depth of the dual FIFO read buffers are N, redundant copies of the appropriate register

Instruction
rollback 4 Sequence

_."°'""_I
_.. 1" rl=5 +r3

• 5=r ,

"., .

!_. 14 ' r_ =5 +1

rollback 2 S1)'

s2 f

Read Buffer

o i°.oo.=oe laH.o ...mllnl.°..u*.a.Do..o_....°o..°ii,_

value(r 2) value(r 3) Ii

value(r4) li

value(r 2) value(r 6) li

value(rs) li

'..........i...........................t...........'

N

l
GPR

Figure 3: Read Buffer.

values (denoted value(r=)) are available to restore the register file given a rollback of < N.

Suppose now that only some of the register values need to be saved. This can be deter-

mined at compile time when data hazards are detected. Figure 4 shows such a case with

the registers to be saved marked with an """. Since only those values which need to be

saved are saved, the read buffer total size can now be less than N. In this case however

the instruction count must also be saved so that the value can be maintained for at least

N cycles. In the event that the read buffer overflows, the oldest value in the buffer must

be pushed to memory and a record kept so that during rollback the value can be retrieved

from memory. Given a dual FIFO depth of M, memory would serve the function of the

remaining N - M of the two FIFOs. This read buffer design reduces the buffer size while

introducing potential performance impacts due to buffer overflows. What will be studied is

how the performance impact increases as the buffer size decreases.

5

Instruction

rollback 4 Sequence

\-'-- • r?÷¢........ I t rj=
g

125 =r,
i /"'--I 3 r1=5 +¢
i .

)_:: I, "r'=5+l

rollback 2 S1 /

I Memory]

...........:
overflow overflow i

value(rz) li1 [I valuecr_)value(r6) tli:li Read Buffer

!..........[..I...............
GPR

$2 /

2.2

Figure 4: Read Buffer Size < 2N.

Other Considerations

A key element in the modified read buffer model are the set of assumptions made relative

to overflow handling. For example, if a memory store buffer were assumed, there would

be no stall if a single FIFO overflowed and the store buffer was available given the current

instruction were not a store. However, if the store buffer were full or if the current instruction

were a store, then a stall would occur. The problem with including a store buffer in the model

is that the performance impact measured would depend on the store buffer size, clouding

the performance impact due to the read buffer alone. The same difficult arises if the cache

is included in the model.

Instead, it will be assumed that a read buffer overflow will always cause a single stall. If

both FIFOs overflow, two stalls will be incurred. This simplifying assumption is pessimistic

relative a store buffer which may have empty locations, while optimistic relative to a full

6

store buffer requiring a write to cache. These assumptions guarantee that all measured

performance impact is directly due to changes in the read buffer size or configuration.

2.3 Read Buffer Models

The most straight forward model for the read buffer is that of configuration A1, shown with

configurations A2, B1, B2, C and D in Figure 5. The obvious problem with configuration

A1 is that if the FIFO connected to S1 is full and the current S1 value must be saved,

a stall occurs due to overflow even though the FIFO connected to $2 may be available.

Configuration A2 resolves this inefficiency by allowing either S1 or $2 access to either FIFO.

Configuration B1 also resolves the inefficiency of configuration A1 by having a single

FIFO with both S1 and $2 connected to it. Configuration B1 assumes that the S1 value and

the $2 value can be saved within the same cycle. This would be possible if the $1 value is

saved during the first half of the cycle and the $2 value is saved during the second half of the

cycle. This split-cycle-save assumption is consistent with the design of register files which

write back during the first half of the cycle and read during the second half of the cycle [11].

Configuration B2 is identical to configuration B1 except that two saves during the same

cycle are not permitted. If two saves are required during the same cycle (eg., an instruction

like r:_ = r_ + rz) , then a stall to save the second value is incurred.

Configuration C attempts to lessen the impact due to the bottleneck in configuration B2

by adding two single level queues between SI&S2 and the single FIFO. Configuration C can

absorb a simultaneous save, processing the first in the current cycle and the second in the

Configuration A1

S1 ,-. S1
l

$2] ; $2

t

I

Configuration A2 Configuration B 1

SI_

$2_
\

Configuration B2

S1 _ S1S2 / $2

I

I

Configuration C

I I I I

\./

Configuration D

$1

$2

o Configuration BI: Can store bus S1 and $2 simultaneously.

o Configuration B2: Must stall on second store to single buffer.

<>Configurations C & D: Assumes stall on second store to single buffer.

Figure 5: Read Buffer Configurations.

next cycle assuming the next instruction does not also require a simultaneous save.

Configuration D extends configuration C to allow both S1 and $2 access to either queue.

3 Simulation Methodology

3.1 Trace vs Simulation

There are two methods to obtain performance measurements given the various configurations

of the previous section. The first is to obtain a trace of the application program and then

analyze the read buffer's effect given the actual instruction sequence. Although the register

reads required to be saved can be computed at compile time through hazard calculation,

this information is difficult to maintain in a trace since the the actual instruction set cannot

be altered. Also, traces typically require a great deal of disk space.

A second approach is to simulate the read buffer at the instruction level. Prior to each

instruction execution, a procedure is called to update the read buffer model. Parameters

such as which register reads to save and instruction type can be passed to the simulation

procedure. The difficulty with this approach is the code growth in the original application

program and a dramatic reduction in application run time.

Due to the availability of workstations to run the simulations and the lack of available

disk space at this time, the second approach was chosen for the simulation.

3.2 Simulation Considerations

Even a modest size hand coded simulation program would be too large to insert prior to each

instruction in the application program. It is therefore necessary to branch to a procedure

which performs the read buffer simulation. Given the complexity of a software model con-

taining 6 different configurations, use of a high level language like C to program the model

is desirable.

The instructions inserted to branch to the simulation procedure prior to each original

application instruction can not be added in the high level language. If this were done, the

register assignments would be corrupted as the new instructions were compiled and the one-

to-one correspondence between original instructions and simulation procedure calls would be

lost. Therefore, the calculation of hazards and subsequent determination of which register

reads should be saved must be performed at the s-code level (after register assignment) and

the appropriate s-code level instructions inserted prior to each original s-code instruction of

the application program. The problem is that calling and executing the simulation procedure

corrupts current register values of the application, since the compiler was not aware of the

inserted instructions. This is further complicated by the fact that since the simulation

procedure is coded in C, it's register usages are not known.

3.3 Methodology

To minimize the application code growth, a simple hand written s-code sequence shown in

Figure 6 is inserted prior to each instruction. This code sequence pushes register 31 on the

l0

Begin rbuf_sim hook:

subu $sp, 28

sw $31, 20($sp)

sw $4, 24($sp)

li $4, _

jal rbuf2_save

lw $31, 20($sp)

lw $4, 24($sp)

addu $sp, 28

End rbuf_sim hook.

addu $25

save_srcl = I, save_src2 = 0

directs read buffer to

save source 1 value

, $23, $8[_ original instruction

Figure 6: s-code Instrumentation

stack (register 31 is used as a return address during procedure calls and therefore will be

corrupted), pushes register 4 on the stack, loads register 4 with information relative to the

saving of $1 or $2 for this particular instruction, calls rbuf2_save, and then pops from the

stack and restores registers 31 and 4.

The code sequence of Figure 6 only saves the two registers necessary to branch to a

procedure and pass one register's worth of parameters. Prior to actually branching to the

read buffer simulation, the remaining registers which are used need to be saved. This was not

done in the code sequence of Figure 6 to limit application code growth. The hand written

code sequence, rbuf2_save, shown in Figure 7 conservatively saves all remaining registers on

the stack. Note that both callee and caller saved registers must be saved since the compiler

was unaware of the inserted procedure call.

Finally, the C level read buffer simulation, rbuf2_sim, is called from the code sequence

shown in Figure 7. The simulation program can be modified and re-compiled without a

11

#Begin rbuf2_save procedure

.verstamp 2 i0

.extern _lob 60

.extern _pctype 4

.extern _ctype_ 0

.text

.align 2

.file 2 "rbuf2_save.c"

.globl rbuf2_save

.loc 2 I0

.ent rbuf2_save 2

rbuf2_save:

.option Ol

subu $sp,

sw $31,

sw $30,

g

@

sw $2, 132($sp)

.mask Ox8ffffff, -4

.frame $sp, 160, $31

.loc 2 11

lw $4, 124($sp)

$sp, 160

iS($sp)

20($sp)

.livereg Ox8ffffff,Oxfff

]al [rbuf2_sim] _-- C-leve|read buffersimulation program

.loc 2 12

lw $31, le($sp)

lw $30, 20($sp)

lw $2, 132($sp)

addu Ssp, Ssp, 160

j $31

.end rbuf2_save

Figure 7: rbuf2_save s-code sequence.

12

correspondingmodification to the application programor the two previouss-codesequences.

Similar s-codesequencesto handle initialization and summary calculations were also

developed.The initialization procedure call is placed in the "main" module prior to the first

instruction. The summary procedure calls are placed prior to all "jal ezit" instructions in all

modules and prior to the "j $31" instructions in the "main" module. Performance impact

(% increase) is computed as: 100 * stall_cycles�base_cycles. Stall cycles result from read

buffer overflows. All instructions are assumed to require one cycle to complete in a pipelined

architecture. This is a pessimistic assumption for performance impact measurement since

load and branch delays would give the read buffer an extra cycle to handle an overflow. The

assumption is made to again help isolate read buffer effects on performance from those of

various delay slot filling strategies.

4 Simulation Results and Analysis

4.1 Implementation

The hazard analysis transformation operates on the s-code emitted by the MIPS code gen-

erator of the IMPACT C compiler [12]. The transformation determines which register reads

need to be saved by the read buffer and inserts calls to the initialization, simulation, and

summary procedures as described earlier. The resulting s-code modules are then compiled

and run on a on a DECstation 3100. For the study, a rollback distance of 10 was selected.

Given a rollback distance of 10, a read buffer size of 20 (for configurations A1, A2, and B1)

13

Program

QUEEN

WC

QSORT

CMP

GREP

PUZZLE

COMPRESS

LEX

YACC

CCCP

I Size l

148

181

252

262

907

932

1826

6856

8099

8775

Description

eight-queen program

UNIX utility

quick sort algorithm

UNIX utility

UNIX utility

simple game

UNIX utility

lexical analyzer

parser-generator

preprocessor for gnu C compiler

Table 1: Application Programs.

will produce zero performance impact.

4.2 Application Programs

Table 1 lists the 10 application programs studied. "Size" is the number of s-level instructions

of the application prior to instrumentation.

4.3 Simulation Results: QUEEN

Figures 8 through 13 show changes in performance overhead (Cycles OH) for various read

buffer sizes and configurations running the QUEEN application. Looking at Figure 8 (con-

figuration A1), it can be seen that significant performance impact is incurred even with

modest reduction in read buffer size. As can be seen from the other application runs, shown

in Appendix A, configuration A1 is consistently the least efficient of the six configurations

studied. This is due to the fact that the dual FIFO's are dedicated to a single source bus.

14

Cycles OH

90-

80-

70-

50-

40-

30-

20-

10-

0

0 5 10 15 20

Read Buffer Size

Figure 8: QUEEN: Configuration A1.

In many cases saving S1 will cause an overflow because the S1 FIFO is full, even though

there is room in the $2 FIFO. Configuration A1 does allow for simultaneous saves of S1

and $2 (given sufficient room in each) but this feature does not compensate for the latter

inefficiency. Figure 9 (configuration A2) shows the improvement gained by allowing either

source bus access to either FIFO.

Figure 10 (configuration B1) shows the most efficient of the six configurations. In this

configuration a total read buffer size of 13 would produce zero performance impact; a 35%

reduction in read buffer size.

Configuration A2 out-performs configuration B1 at the lower buffer sizes but due to

the gradual slope of the A2 curve versus the sharp drop-off of the B1 curve, B1 performs

better at the low performance overhead values. This characteristic of configuration A2

15

Cyclcs OH

lOO(?
90--

80--

70--

__c
50-

402

30-

2o2

10-

0

0

,?,9
5 10 15

Read Buffer Size

Figure 9: QUEEN: Configuration A2.

,9
20

Cycles OH

80

70
(

60-

50-

40-

30-

20-

10-

0

0
I I I I I I I I I I I I T T T T T T T

5 10 15 20

Read Buffer Size

Figure 10: QUEEN: Configuration B1.

16

CyclesOH
ld2
90-

80-

70-

50-

40-

30-

20--

10-

0
I I I I I I I I I I I I 1 I I I I

0 5 10 15

Read Buffer Size

Figure 11: QUEEN: Configuration B2.

0000000

III

2O

versus configuration B1 is present in all of the application results. It should be noted that

configuration B1 does assume simultaneous saves of S1 and $2 can be handled within the

same cycle. If this latter assumption is invalid, Figure 11 (configuration B2) shows that

no less than 9.41% performance impact is achieved regardless of the read buffer size. The

"leveling off" of Figure 11 is due to the bottleneck at the single FIFO entry point and not

the depth of the FIFO. The flat part of the curve shows the percent of instructions requiring

simultaneous saves of $1 and $2.

Figure 12 (configuration C) shows how a single level dual queue placed between the source

bus and the single FIFO can alleviate some of the bottleneck effects. The dual queue can

absorb a single simultaneous save of $1 and $2, distributing the saves over two cycles. A

non-zero minimum performance overhead is still present due to cases where the dual queue

17

CyclesOH

80

70
(

60-

50-
40-

30-
20-

10-

0 I I 1 I I 1 I I I 1 I I
0 5 I0

ReadBuffer Size

v _ v v v v v

I I I I I I I I
15 20

Figure 12: QUEEN: Configuration C.

has not emptied before the next simultaneous save occurs.

Figure 13 (configuration D) shows the results of an improved queue structure which

permits saves from either bus into either queue. This configuration avoids stalls in some

cases (eg., $2 needs to be saved while the queue dedicated to $2 in configuration C is full

and the other queue is empty). Configuration D also has a non-zero minimum performance

overhead but gives better performance than configuration C.

The simulation results for QUEEN show that configuration A1 is the least efficient and

that given the ability to do split-cycle-saves, configuration B1 is the most efficient. Without

the split-cycle-save capability, configuration D is the best of the single FIFO designs resulting

in a minimum performance overhead of 4.45% and configuration A2 is the best of the dual

FIFO designs resulting in a 1.66% performance overhead with a read buffer size of 14. For

18

CyclesOH

I I I I I I I I I I I

90180

70

50-

40-

30-

20-

10-

0

0

.... vv_

IIIIIIIII
15 205 10

Read Buffer Size

Figure 13: QUEEN: Configuration D.

For configurations B1, B2, C, and D a total read buffer size of 13 is sufficient to maximize

performance (note that 2 must be added to each read buffer size value in C and D to account

for the dual queues).

4.4 Simulation Results: Other Application Programs

Resulting plot shapes of the other application programs, shown in Appendix A, are similar

to those for QUEEN. The differences between the application results are the points at which

the curve "levels off" (i.e., the buffer size) and, in the case of configurations B2 through

D, at what level the performance overhead stabilizes. The former measurement will be

called RB_size and the latter OH_level. Table 2 shows measurements obtained for the 10

applications given the two most efficient configurations, A2 and B1. Configuration A2 does

19

RB_size

Program A2 I B1

QUEEN 14 13

WC 10 9

QSORT 16 15

CMP 12 11

GREP 10 10

PUZZLE 10 9

COMPRESS 12 13

LEX 12 13

YACC 16 15

CCCP 12 13

OH_level (_)

A2 I B1

1.67 0.00

0.00 0.00

2.28 0.00

0.00 0.00

0.18 0.00

2.87 0.00

2.87 0.00

2.73 0.00

1.07 0.00

2.34 0.00

Table 2: Result Summary.

not level off like configuration D and does not rapidly approach zero like configuration B1.

Instead, Configuration A2 gradually approaches zero. The OH_level measurement listed in

Table 2 for configuration A2 therefore gives the first performance overhead value that is less

than 3%, and it's corresponding RB_size value.

It can be seen from Table 2 that the read buffer size requirement is roughly the same, per

application, regardless of the split-cycle-save assumption. The size requirement does vary

quite a bit from application to application; PUZZLE and WC as small as 9 with QSORT

and YACC as large as 15. One problem with designing the read buffer capacity to handle

the majority of applications is the steepness of the curve (given configuration B1) as read

buffer size decreases. For example, if the read buffer size is chosen at 13 (sufficient for all

but QSORT and YACC), QSORT would run 15.55% slower and YACC would run 16.35%

slower; an unacceptable impact given the minor hardware savings with a read buffer of

size 13 versus 20. It is concluded that while the full 2N read buffer size is not required

2O

(given the split-cycle-saveassumption), nearly 2N is required to adequately handle most

applications. It seemsunlikely that sucha small hardware cost reduction would outweigh

the cost increaseof additional logic to handle buffer overflows. Also, regardlessof which

buffer size (lessthan 2N) is chosen, it is possible that an important application will suffer a

significant performance impact similar to QSORT and YACC with a buffer size of 13. It is

therefore advisable to use configuration A1 with a total read buffer size of 2N. Note this is

not a contradiction with the previous conclusion that configuration A1 is the least efficient,

which is true only when the read buffer size is less than 2N. With size 2N, performance

impact is always zero for configuration A1.

Given the previous conclusion, the split-cycle-save discussion becomes unnecessary. It

should be noted however that significant performance impacts were measured in QUEEN,

QSORT, COMPRESS, LEX, YACC, and CCCP regardless of read buffer size using config-

uration D. Also, using configuration A2, some performance impacts were measured given a

similar read buffer size to that used for configuration B1. This result would indicate that if

the split-cycle-save assumption were not valid, again only configuration A1 with a total read

buffer size of 2N would be adequate.

5 Summary

When transient processor errors occur, multiple instruction retry can be an effective alterna-

tive to full checkpointing and rollback recovery. Multiple instruction retry within a sliding

window of a few instructions can be implemented in parallel with concurrent error detection

21

for rapid recovery from transient processor errors. Hardware schemes such as reorder buffers,

history buffers, future files, and micro-rollback differ in where the updated and old values

reside, circuit complexity, CPU cycle times, and rollback efficiency.

In contrast to hardware schemes, a compiler-assisted approach to implementing multiple

instruction retry has been recently developed in which a read buffer is used to resolve one

type of hazard, reducing code growth, complilation time, and performance impact.

The 2N read buffer size requirement of the compiler-assisted approach is worst case,

assuring data redundancy for all values required but also saving register reads unnecessarily.

By adding extra bits in the operand field for source 1 and source 2 it becomes possible to

design the read buffer to save only those values required, thus reducing the read buffer size

requirement. The cost of the buffer size reduction is occasional overflows resulting in stall

cycles. This study determined the effect on performance of a DECstation 3100 running 10

application programs using 6 read buffer configurations.

Simulation was perform by inserting a hand-coded s-level instruction sequence prior to

each original instruction. The hand-coded sequence then calls another hand-coded sequence

which saves all registers and subsequently calls the simulation procedure. The simulation

procedure was written in the C programming language and is compiled separately, allowing

modification without disturbing the instrumented application programs. Each instrumented

application program was run for various read buffer sizes and 6 read buffer configurations.

Performance impact was measured by the number of stall cycles versus the number of base

cycles.

22

Resultsshowthat configurationsA2 and B1 werethe most efficientand differeddepending

on whether split-cycle-saveswere assumed. Performanceversus read buffer size plots, by

configuration, for the 10application programswereseento be of the sameshape. There was

howeversignificant variancesbetweenthe buffer sizesrequired for minimum performance

impacts betweenapplications, and the performancestabilization value assumingno split-

cycle-savecapability. It wasdeterminedthat while the full 2N readbuffer sizeis not required,

nearly 2N is requiredto adequatelyhandlemostapplications. Also, regardlessof which buffer

size is chosen(i.e., lessthan 2N), it is possiblethat an important application will suffer a

significant performance impact. This study therefore concludesthat no reduction in read

buffer sizebelow 2N is practical given a wide variety of generalapplications.

23

Appendix A

Cycles OH

80-t

50-

40-

30-

20-

10-

0
I I I I

0
I

5

0

I I

10

Read Buffer Size

Figure 14: WC: Configuration A1.

Cycles OH

70_

60-

50-

40-

30-

20-

10-

0 f3 _ F5 _ _
I I I I I I I I I T I T I T I T I T I T

5 10 15 20

Read Buffer Size

Figure 15: WC: Configuration A2.

24

CyclesOH

90-

80-

60-

50-

40-

30-

20-

10-

0 I I I I

0 5

???????????
10 15 20

Read Buffer Size

Figure 16: WC: Configuration B1.

Cycles OH

90-

80-

70£

60-

50-

40-

30-

20-

10-

0

0

_0000

_00000000©00

I I I I I I I I I I I I I I I I I I I I
5 10 15 20

Read Buffer Size

Figure 17: WC: Configuration B2.

25

CyclesOH
100(:_)

90-
80-

70-/

60-
50-
40-

30-
20-

10-
0

0

_000

OOO000000000

I I I I I I I I I I I I I 1 I I I I I I
5 1O 15 20

Read Buffer Size

Figure 18: WC: Configuration C.

Cycles OH

90-

80-

70-(

60-

50-

40-

30-

20-

10-

0

0
I I I I I I I T T T T "i" T T T T T T T

5 10 15 20

Read Buffer Size

Figure 19: WC: Configuration D.

26

CyclesOH

100(_ °)

9o-I
80

70-

60-

50-

40-

30- O

20-

10-

0
I I I I I I I I I I I I I I I

0 5 10 15
Read Buffer Size

20

Figure 20: QSORT: Configuration A1.

Cycles OH

9o-1

50-

40-

30-

20-

1°° t i i i " i?

0 5 10 15 20

Read Buffer Size

Figure 21: QSORT: Configuration A2.

27

CyclesOH

0-

80 -1

70-

60-

50-

40-

30-

20-

10-

0

0

¢'h ¢'h ¢%

I I I I I I I I I I I I I I I T T T T_
5 10 15 20

Read Buffer Size

Figure 22: QSORT: Configuration B1.

Cycles OH

,dJo
0-

80-1

70-

60-

50-

40-

30-

20-

10-

0

00000

I I I I I I I I 1 I 1 1 I I I I I I I I
5 10 15 20

Read Buffer Size

Figure 23: QSORT: Configuration B2.

28

CyclesOH

9o-]

40-

30-

20-

10

0

0000000

I I I I i I I I I i I I I I I I I I I I
5 10 15 20

Read Buffer Size

Figure 24: QSORT: Configuration C.

Cycles OH

80

i40-

30-

20-

10

0

0000000

I I I I I I I I I I I I I I I I I I I I
5 I0 15 20

Read Buffer Size

Figure 25: QSORT: Configuration D.

29

CyclesOH
1oo(_%)
90-

80-

70-

60-

50-

40-

30-

2o-

10-

0

0 5 10 15
Read Buffer Size

t_i T I¢_
20

Figure 26: CMP: Configuration A1.

Cycles OH

 oo(%)
90 -t

80-

70-

60-

50-

40-

30-

20-

10-

0

0

t_ t_

I I I I I I I I I I I T I T I T I
5 l0 15

Read Buffer Size

Figure 27: CMP: Configuration A2.

20

30

Cycles OH

90-

80-

70-

60-

50-

40-

30-

20-

10-

o ????????9
0 5 10 15 20

Read Buffer Size

Figure 28: CMP: Configuration B1.

Cycles OH

90- _OO_O

80-

70-

60-

50-

40-

30-

20-

10-

0 I J I I t [[I J I I
0 5 10

Read Buffer Size

000000000

lllllJlll
15 20

Figure 29: CMP: Configuration B2.

31

CyclesOH
 d2)
90-

80-

70-

60-

50-

40-

30-

20-

10-

0 '' I I I I I I I I I I l I I I I I I I I I
0 5 10 15 20

Read Buffer Size

vvvvvvvvv

Figure 30: CMP: Configuration C.

Cycles OH

,oo(.%)
i

9o-¢

80-_

7o'

60-

50-

40-

30-

20-

10-

0 ¢_ ¢_ ¢"_ F'_ ¢'% ¢'% ¢_ ¢% ¢"_ F_TTTTTTTTTT?
0 5 2010 15

Read Buffer Size

Figure 31: CMP: Configuration D.

32

CyclesOH

90-C
80- O O

70-

60-

50-

40-

30-

20-

10-

0 I I I I I I I I I I T

0 5 10 15 20

Read Buffer Size

Figure 32: GREP: Configuration A1.

Cycles OH

100(_)

80

50-

40-

30-

20-

10-

0

0 5 10

Read Buffer Size

,9,TIT T,9
15 20

Figure 33: GREP: Configuration A2.

33

CyclesOH
lOO(%)

80

70

60-

50-

40-

30-

20-

10-

0

0
I I I I I I I I TTTTTTTTTT_

5 10 15 20

Read Buffer Size

Figure 34: GREP: Configuration B1.

Cycles OH

100(_%)

90_(

80-

70-

60-

50-

40-

30-

2o--

lo_
0 _

0

000000000

I I I I I I I I I I I I I I I I I I I I
5 I0 15 20

Read Burr Size

Figure 35: GREP: Configuration B2.

34

CyclesOH

90_ (

80-

70-

60-

50-

40-

30-

20-

10-

O:
I I

0
IIII

5

_DO000000000

I I I I I I I I I I I I I I

10 15 20

Read Buffer Size

Figure 36: GREP: Configuration C.

Cycles OH

80-

2-
50-

40-

30-

20-

10-

0
I I I i I

5
I I TTTTTTTTTTTT

10 15 20

Read Buffer Size

Figure 37: GREP: Configuration D.

35

CyclesOH

100(_°)

70 _1

60-

50-

40-

30-

20-

10-

0

0 5 1510

Read Buffer Size

t'h

20

Figure 38: PUZZLE: Configuration A1.

Cycles OH

90-

80-

70 -_

60-

50-

40-

30-

20-

10-

0

0
I I I I I I I I I I I I I T I T I T I T

5 10 15 20

Read Buffer Size

Figure 39: PUZZLE: Configuration A2.

36

90-
80-
70A

60-

50-
40-

30-
20-

10-
0

0

._OOO

r
5 10 15 20

Read Buffer Size

Figure 40: PUZZLE: Configuration B1.

Cycles OH

90-

80-

70L

60-

50-

40-

3o2

20-

10-

0

0

v v

IIII I I 1 I I l I I i I I I I I I 1
5 10 15 20

Read Buffer Size

Figure 41: PUZZLE: Configuration B2.

37

Cycles OH

xoo(yO)
90-

80-

70A

60-

50-

40-

30-

20-

10-

0

0
I I I I I 1 I I I I I I I I I I I I I I

5 10 15 20

Read Buffer Size

Figure 42: PUZZLE: Configuration C.

Cycles OH

80

F'_ ¢'%

10-

o ,, 799999999999
0 5 10 15 20

Read Buffer Size

Figure 43: PUZZLE: Configuration D.

38

CyclesOH

90-

80_1
70-

60-
50--

40--
30-

20-
10-

0
0
i I I I I I I I I I I I I I I I I I T I

5 10 15 20

Read Buffer Size

Figure 44: COMPRESS: Configuration A1.

Cycles OH

9o-1

40

30--

20--

1

v I I I 1 I I I I I I I I I "1

0 5 10

Read Buffer Size

I_ I T I "r

15 20

Figure 45: COMPRESS: Configuration A2.

39

CyclesOH
lOO(_%)
90-

80-_

70-

60-

50-

40-

30-

20-

10-

0

0
I I I I I I I I I 1 I I T T T T T T T T

5 10 15 20

Read Buffer Size

Figure 46: COMPRESS: Configuration B1.

Cycles OH

90-

80.2

70-

60-

50-

40-

30-

20-

10-

0

0

00000000

I I I I I I I I I I I I I I I I I I I I
5 10 15 20

Read Buffer Size

Figure 47: COMPRESS: Configuration B2.

40

CyclesOH

90-
802

70-

60-

50-

40-

30-

20-

10-

0

0

000000000

I I I I I I I I I I I I I I I I I I I I
5 10 15 20

Read Buffer Size

Figure 48: COMPRESS: Configuration C.

Cycles OH

90-

80-1

70-

60-

50-

40-

30-

20-

10-

0

0

000000©00
I I I I 1 I I I I I I I I I I I I I I I

5 10 15 20

Read Buffer Size

Figure 49: COMPRESS: Configuration D.

41

CyclesOH
_(%)

80-

:-_
50-

40-

30-

20-

10-

0

0 5 10 15 20

Read Buffer Size

Figure 50: LEX: Configuration A1.

Cycles OH

100(__

90-_

80-

2- .

50-

40-

30-

20-

lilltil,,lil_T,?,_l?
0 5 l0 15 20

Read Buffer Size

Figure 51: LEX: Configuration A2.

42

CyclesOH

90- _

80-

50-
40-
30-

20-
10-

0
I I I I I I I I I I I I T T T T T T TT

0 5 I0 15 20

Read Buffer Size

Figure 52: LEX: Configuration B1.

Cycles OH

80- _2-

50- _

40-

30-

0000000

0
I I I I I I I I I I I I I I I I I I I I

0 5 10 15 20

Read Buffer Size

Figure 53: LEX: Configuration]32.

43

CyclesOH
100(%)

90

80

OOO000000

0 I

0 5 10 15 20

Read Buffer Size

Figure 54: LEX: Configuration C.

Cycles OH
.(%)

100-.(_

90-_

80-

50-_

40-

30-

20-

10-

0

0

000000000

I I I I I I I I I I I I I I I I I I I I
5 10 15 20

Read Buffer Size

Figure 55: LEX: Configuration D.

44

CyclesOH

1: (_O_'O_)_

80-

2-
50-

40-

30-

20-

10-

0

0 5 10 15 20

Read Buffer Size

Figure 56: YACC: Configuration A1.

Cycles OH

loo(_%)

90-

80-

70-

60-

50-

40-

30-

20-

I0-

0

0
I I I I I 1 I I 1 I I I 1 I I I

5 10 15

Read Buffer Size

Figure 57: YACC: Configuration A2.

45

CyclesOH
,(%)

1005

90-

80-

2-
50-

40-

30-

20-

10-

0 I I I I I 1 I I I I I I I I T T T T T T
5 10 15 20

Read Buffer Size

Figure 58: YACC: Configuration B1.

Cycles OH

100(_%)

90-

80--

70--

60--

50--

40--

30-

20- 00000

I0-

0

0
I I I I I I I I I I I 1 I I I I I I I I

5 10 15 20

Read Buffer Size

Figure 59: YACC: Configuration B2.

46

CyclesOH

90-_

80-

2-

50- _

40-

30-

20-

10-

0

0000000

I I I I I I I I 1 I I I I I I I I I I I
5 10 15 20

Read Buffer Size

Figure 60: YACC: Configuration C.

Cycles OH

loo(_%)

90-

80-

70-

60-

50-

40-

30-

20-

10-

0

0

0000000

I I I I I I 1 I I I I I I I I I I I I I
5 10 15 20

Read Buffer Size

Figure 61" YACC: Configuration D.

47

CyclesOH

90- 0

80-

70-

60-

50-

40-

30-

20-

I0-

0

0
I I I I I I I I I

5 10 15 20

Read Buffer Size

Figure 62: CCCP: Configuration A1.

Cycles OH

loo(.%)

90-

80-

70-

60-

50-

40-

30-

20-

10-

0 I I I I I I 1 I I I I I I 1
0 5 10

Read Buffer Size

Figure 63: CCCP: Configuration A2.

48

Cycles OH

ioo(_%)

90-

80-

70-

60-

50-

40-

30-

20-

10-

0 ;

0
I I I I 1 I I I I I I I I TTTTTTT

5 10 15 20

Read Buffer Size

Figure 64: CCCP: Configuration B1.

Cycles OH

80-

70-

60-

50-

40-

30-

20-

10-

0

0

_0000000

I I I 1 I I I I I I I I I I I I I I I 1

5 10 15 20

Read Buffer Size

Figure 65: CCCP: Configuration B2.

49

Cycles OH

80-

70-

60-

50-

40-

30-

20-

10-

0

0

v v v v v v v

I I I I I I I I I I I I I I I I I I I I
5 10 15 20

Read Buffer Size

Figure 66: CCCP: Configuration C.

Cycles OH
(%)

80-

:-
I

50-_

40-

30-

20-

10-

0

0

00000©00
i i I I I I I I I I I I I I I I I I I I

5 10 15 20

Re_ Buffer Size

Figure 67: CCCP: Configuration D.

50

References

[1] N. J. Alewine, S.-K. Chen, C.-C. J. Li, W. K. Fuchs, and W-M. W. Hwu. Branch

Recovery with Compiler-Assisted Multiple Instruction Retry. In The Twenty-Second

International Symposium on Fault-Tolerant Computing, pages 66-73, July 1992.

[2]

[31

[4]

[51

L. Svobodova. Resilient Distributed Computing. IEEE Transactions on Software En-

gineering, vol. SE-10, No. 3, May 1984.

L. Lin and M. Ahamad. Checkpointing and rollback-recovery in distributed object based

systems. In The Twentieth International Symposium on Fault-Tolerant Computing,

pages 97-104, 1990.

K. Tsuruoka, A. Kaneko, and Y. Nishihara. Dynamic Recovery Schemes for Distributed

Processes. In IEEE 2nd Syrup. on Reliability in Distributed Software and Database

Systems, pages 124-130, 1981.

W-M. W. Hwu and Y. N. Patt. Checkpoint repair for high-performance out-of-order

execution machines. IEEE Transactions on Computers, vol. C-36, pp. 1496 -1514, Dec.

1987.

[6]

[71

[8]

[9]

[10]

[11]

[12]

C-C. J. Li, S-K. Chen, W. K. Fuchs, and W-M. W. Hwu. Compiler-Assisted Multiple

Instruction Retry. Technical Report CRHC-91-31, Coordinated Science Laboratory,

University of Illinois, May 1991.

Y. Tamir and M. Tremblay. High-performance fault-tolerant VLSI systems using micro

rollback. IEEE Transactions on Computers, vol. 39, pp. 548-554, Apr. 1990.

M. S. Pittler, D. M. Powers, and D. L. Schnabel. System development and technology

aspects of the IBM 3081 processor complex. IBM Journal of Research and Development,

vol. 26, pp. 2-11, Jan. 1982.

Y. Tamir, M. Liang, T. Lai, and M. Tremblay. The UCLA Mirror Processor: A Build-

ing Block for Self-Checking Self-Repairing Computing Nodes. In The Twenty-First

International Symposium on Fault-Tolerant Computing, pages 178-185, June 1991.

J. E. Smith and A. R. Pleszkun. Implementing precise interupts in pipelined processors.

IEEE Transactions on Computers, vol. 37, pp. 562-573, May 1988.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann Publishers, Inc., 1990.

P.P Chang, W.Y. Chen, N.J. Warter, and W-M. W. Hwu. IMPACT: An Architecture

Framework for Multiple-Instruction-Issue Processors. In Conference Proceedings of the

18th Annual International Symposium on Computers, pages 266-275, May 1991.

51

UNCL_b S IF lED
SECURITY CLASSIFICATION OF THIS PAGE

la. REPORT SECURITY CLASSIFICATION

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-92-2239

6a. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab

University of lliinois

6C. ADDRESS (Ely, State, acid ZIP Code)

ii01 W. Springfield Avenue

Urbana, IL 61801

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

7a

8c. ADDRESS (C/ty, State, and ZlP Code)

7b

REPORT DOCUMENTATION PAGE

CRHC-92-21

6b. OFFICE SYMBOL

(If applicable)

N/A

8b. OFFICE SYMBOL
(If applicable)

11, TJTLE (Ir_lude _cur_ Classification)

Simulation and Analysis of Support

lb. RESTRICTIVE MARKINGS

None

3. DISTRIBUTION IAVAILABILITY OF REPORT

Approved for public release;

distribution unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION
NASA

7b. ADDRESS (C/ty, State, and ZIP Code)

Moffitt Field, CA

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERS

ELEMENT NO. .

Hardware_r Multiple Instruction Rollback

WORK UNIT

ACCESSION NO

12. PERSONAL AUTHOR(S)
ALEWINE, Nell J.

13a. TYPE OF REF_ORT 113b.TIME COVERED
i

Technical I FROM

16. SUPPLEMENTARY NOTATION

TO J14. DATE OF REPORT CYeet MonTh Day) i15. PA_1992 OCT '10 '
/

COUNT

7. COSATI CODES i lB. SUBJECT TERMS (Continue on reverse if Reces_ary and identify by bl_k number)

FIELD I GROUP SUB-GROUP J instruction retry, compilers, hardware assisted retryI
!9. ABSTRACT (toni/hUe on reverse if necessary and identify by block number)-

Recently, a compiler-assisted appct_h to multiple iuslruction retry was developed. In this scheme a read

buffer of size 2N, where N re;xesents the maximum inslructlon mllbuck distance, is used to resolve one type of data

hazard. This hardware support helps to reduce code growth, complilatlon time, and some of the performance
impacts associated with hazard resolution.

The 2N read buffer size requirement of the compiler-assisted approach is worst case, assuring data redun-

dancy for all data required but also providing some unnecessary redundancy. By adding extra bits in the operand

field for source 1 and source 2 it becomes possible to design the read buffer to save only those values required, thus

reducing the read buffer size requJremenL

This study measures the effect on performance of s DECstation 3100 running 10 application programs using 6
read buffer conligtwafious at varying read buffer _.

Continued on back

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION

13¢IUNCLASSIFIEDAJNLIMITED [] SAME AS RPT. [] DT1C USERS ! Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL J22b.TELEPHONE (Include Area CO<_) [22C. OFFICE SYMBOL
I I

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

UI;CLASS IFIED

